Local Search Enabled Extremal Optimisation for Continuous Inseparable Multi-objective Benchmark and Real-world Problems
نویسندگان
چکیده
Local search is an integral part of many meta-heuristic strategies that solve single objective optimisation problems. Essentially, the meta-heuristic is responsible for generating a good starting point from which a greedy local search will find the local optimum. Indeed, the best known solutions to many hard problems (such as the travelling salesman problem) have been generated in this hybrid way. However, for multiple objective problems, explicit local search strategies are relatively under studied, compared to other aspects of the search process. In this paper, a generic local search strategy is developed, particularly for problems where it is difficult or impossible to determine the contribution of individual solution components (often referred to as inseparable problems). The meta-heuristic adopted to test this is extremal optimisation, though the local search technique may be used by any meta-heuristic. To supplement the local search strategy a diversification strategy that draws from the external archive is incorporated into the local search strategy. Using benchmark problems, and a real-world airfoil design problem, it is shown that this combination leads to improved solutions.
منابع مشابه
A Multi-Objective Extremal Optimisation Approach Applied to RFID Antenna Design
Extremal Optimisation (EO) is a recent nature-inspired meta-heuristic whose search method is especially suitable to solve combinatorial optimisation problems. This paper presents the implementation of a multi-objective version of EO to solve the real-world Radio Frequency IDentification (RFID) antenna design problem, which must maximise efficiency and minimise resonant frequency. The approach w...
متن کاملDynamic function optimisation with hybridised extremal dynamics
Dynamic function optimisation is an important research area because many real-world problems are inherently dynamic in nature. Over the years, a wide variety of algorithms have been proposed to solve dynamic optimisation problems, and many of these algorithms have used the Moving Peaks (MP) benchmark to test their own capabilities against other approaches. This paper presents a detailed account...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملGenetic Algorithms for University Course Timetabling Problems
The university course timetabling problem is a difficult optimisation problem due to its highly-constrained nature. Finding an optimal, or even a high quality, timetable is a challenging task, especially when resources (e.g., rooms and time slots) are limited. In the literature, many approaches have been studied to solve this problem. In this thesis, we investigate genetic algorithms to solve t...
متن کاملEvolutionary Population Dynamics and Multi-Objective Optimisation Problems
Problems for which many objective functions are to be simultaneously optimised are widely encountered in science and industry. These multiobjective problems have also been the subject of intensive investigation and development recently for metaheuristic search algorithms such as ant colony optimisation, particle swarm optimisation and extremal optimisation. In this chapter, a unifying framework...
متن کامل